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Abstract

The primary objective of this technical note is to establish an equivalence between the (preconditioned) conjugate

gradient (PCG) algorithm and a special central difference based DR procedure, thereby revealing a discrete dynamic

nature of the CG iterative procedure. This may therefore provide an alterative viewpoint to gain a further understand-

ing of the CG method and its variants.
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1. Introduction

Consider a linear algebraic system of equations
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E-m
Ku ¼ b ð1Þ

in which K is an n · n symmetric positive-definite (SPD) matrix (where n is the order of the equations); and

b and u are, respectively, the known right hand side and the solution to be sought.

The conjugate gradient (CG) method [1] is the most prominent and well-understood iterative procedure

for solving the above equations. It possesses several unique properties including the guaranteed conver-

gence in at most n iterations in exact arithmetic. In addition, the CG method has served as the basis for

further developments of several CG-type iterative solvers (such as CGS [2] and BiCGStab [3]) for undefinite
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and unsymmetric linear systems, and the basis of many algorithms widely used in general optimization and

eigenvalue problems [4–6]. In practical terms, the CG method is free from any user-specified parameters

and very simple to implement. With a proper preconditioning scheme [7,8], the preconditioned conjugate

gradient (PCG) method is often found to be the most effective iterative solver for many applications, par-

ticularly for large scale problems.
On the other hand, the dynamic relaxation (DR) technique [9,10] can also be used to obtain a solution of

Eq. (1). By viewing (1) as a static problem, the basic idea of the DR technique is to transform the problem

into a damped second order dynamic system and the steady-state, often obtained by employing a central

difference (CD) based time integration scheme, will be the solution to be sought.

The primary objective of this note is to establish an equivalence between the CG algorithm and a special

central difference based DR procedure, thereby revealing a discrete dynamic nature of the CG iterative pro-

cedure. This may therefore provide an alterative viewpoint to gain a further understanding of the CGmethod.

Note that the interpretation of stationary iterative solvers, including SOR and ADI, as time integration
schemes for first order ODE systems of diffusion type is well-established [11].

As the CG method is well-documented, its algorithmic detail will be very briefly described. Slightly

more detail will be given to the description of the standard DR approach, particularly a general central

difference time integration scheme from which the discrete dynamic nature of the CG method is derived.

Simple numerical examples will then be employed to highlight some dynamic features of the CG

algorithm.
2. Theoretical aspects

2.1. Preconditioned conjugate gradient method

Suppose that the preconditioning matrix is MP (also symmetric and positive-definite). Without loss of

generality a zero initial guess, u0 = 0, is assumed. The PCG algorithm can be summarized as follows:

� Set u0 = 0; r0 = b. Compute p0 ¼ M�1
P r0

� For i = 0, 1, 2, . . . until convergence:
(1) Update solution:
uiþ1 ¼ ui þ aipi; ð2Þ

where

T T �1
ai ¼
pi ri

pTi Kpi
¼ ri MP ri

pTi Kpi
. ð3Þ
(2) Update residual:
riþ1 ¼ ri � aiKpi. ð4Þ

(3) Compute new search direction:
piþ1 ¼ M�1
P riþ1 þ bipi; ð5Þ
where
T �1 T �1
bi ¼ � pi KMP riþ1

pTi Kpi
¼

riþ1MP riþ1

rTi M
�1
P ri

. ð6Þ
Detailed discussions about the properties and convergence rate of the above PCG algorithm can be

found elsewhere (see for instance [4,5]).
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2.2. Dynamic relaxation

In structural terms, Eq. (1) represents a static problem. By artificially introducing both a mass matrix M

and a damping matrix C, Eq. (1) can be transformed into a second order dynamic problem:
Maþ Cvþ Ku ¼ b; ð7Þ

where a and v are, respectively, the acceleration and velocity of the system; and is subject to (arbitrary) ini-

tial conditions:
uð0Þ ¼ 0; vð0Þ ¼ 0.
Due to the nature of damping and a constant force applied, the dynamic/transient response of the above
system under any given initial conditions will eventually disappear, resulting in only the static solution

being retained. This constitutes the main idea of the dynamic relaxation. Numerically an explicit time step-

ping scheme, mainly the central difference algorithm, is employed to obtain the steady state solution of the

system. In order to maximize the convergent rate, several numerical parameters need to be carefully

selected.

2.2.1. Standard central difference algorithm with constant time step

In the standard central difference time integration algorithm with a constant time step Dt, both velocity
and displacement at each discrete time instance are updated by
viþ1
2
¼ 2Mþ DtC½ ��1 ð2M� DtCÞvi�1

2
þ 2Dtðb� KuiÞ

h i
; ð8Þ

uiþ1 ¼ ui þ Dtviþ1
2
; ð9Þ
where ui and ui+1 are, respectively, the displacements at times ti and ti+1, and viþ1
2
is the velocity at the half-

time step ti+1/2 = (ti+ti+1)/2. A common choice in DR is
M ¼ diagfKg; C ¼ 2cM; ð10Þ

where c is termed the damping parameter. Thus, (8) can be simplified as
viþ1
2
¼ 1� cDt

1þ cDt
vi�1

2
þ Dt
1þ cDt

M�1ri ðri ¼ b� KuiÞ. ð11Þ
There are two parameters, Dt and c, involved in the above procedure. In order to achieve best possible

convergence rate, the optimum values of these parameters have been established [9,10] as
Dtop ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kmin þ kmax

p ; cop ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kminkmax

kmin þ kmax

s
; ð12Þ
where kmin and kmax are the minimum and maximum eigenvalues of M�1K. Also note that the above opti-

mum time step is (slightly) less than the critical time step, Dtcr, (the maximum step to ensure a stable time

integration):
Dtop < Dtcr ¼ 2=
ffiffiffiffiffiffiffiffiffi
kmax

p
. ð13Þ
2.3. Alternative central difference algorithms

Now consider a more general central difference based DR algorithm: (1) time steps Dti = ti+1 � ti are not

constant; and (2) the damping parameter c can be varied. In addition, the following two slightly different
discrete dynamic equations, namely the standard and half-step versions, are also considered
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ðStandardÞ Mai þ 2ciMvi þ Kui ¼ b; ð14Þ

ðHalf-stepÞ Mai þ 2ciMvi�1=2 þ Kui ¼ b. ð15Þ
The main difference between them is that the velocity in the damping term in the half-step version is

lagged behind by half a time step. The corresponding formulas for updating the velocity are, respectively,

[12]:
ðStandardÞ viþ1
2
¼ D�ti

1þ ciDti
M�1ri þ

1� ciDti�1

1þ ciDti
vi�1

2
; ð16Þ

ðHalf-stepÞ viþ1
2
¼ D�tiM

�1ri þ ð1� 2ciD�tiÞvi�1
2
; ð17Þ
where D�ti is the half-time step, defined as D�ti ¼ tiþ1=2 � ti�1=2 ¼ 1
2
ðDti þ Dti�1Þ. The displacement is updated

in both versions by
uiþ1 ¼ ui þ Dtiviþ1
2
. ð18Þ
In the above two algorithms, there are two parameters, Dti and ci, to be determined at each time step.

Without a practical means to determine the parameters, these two algorithms would have only theoretical

values but without practical significance. It is shown in what follows, however, that Dti and ci can be spe-

cially chosen so that the two versions of the variable time step central difference algorithm become identical
to the CG algorithm.
2.4. Equivalence between the CG method and the CD algorithms

The time marching formulas for the above two central difference algorithms, the standard and half-time,

can be re-arranged as:
ðStandardÞ
v�
iþ1

2

¼ M�1ri þ 1�ciDti�1

ci�1D�ti
v�
i�1

2

;

uiþ1 ¼ ui þ D�tiDti
1þciDti

v�
iþ1

2

;

8<
: ð19Þ
where v�
iþ1

2

¼ civiþ1
2
and ci ¼ ð1þ ciDtiÞ=D�ti; and
ðHalf-stepÞ
v�
iþ1

2

¼ M�1ri þ 1�2ciD�ti
D�ti

v�
i�1

2

;

uiþ1 ¼ ui þ D�tiDtiv�iþ1
2

;

(
ð20Þ
where v�
iþ1

2

¼ viþ1
2
=D�ti.

By comparing (19) and (20) with (2) and (4) of the PCG method, it is obvious that the three algorithms

will be identical if the following conditions are satisfied:
MP ¼ M; ð21Þ
pi ¼ v�iþ1

2
; ð22Þ

ðStandardÞ bi�1 ¼
1� ciDti�1

ci�1D�ti
; ai ¼

D�tiDti
1þ ciDti

; ð23Þ

ðHalf-stepÞ bi�1 ¼
1

D�ti
� 2ci

� �
D�ti�1; ai ¼ D�tiDti. ð24Þ
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It follows from (23) and (24) that Dti and ci can be expressed by bi�1 and ai in a recursive form as
ðStandardÞ
Dti ¼ 2ai

Dti�1þaibi�1ci�1
;

ci ¼ 1�bi�1ci�1D�ti
Dti�1

;

(
ði ¼ 1; 2; . . .Þ; ð25Þ

ðHalf-stepÞ
Dti ¼ � Dti�1

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dti�1

2

� �2 þ 2ai

q
;

2ci ¼ 1
D�ti

� bi�1

D�ti�1
;

8<
: ði ¼ 1; 2; . . .Þ. ð26Þ
In both cases, the values for Dt0 and c0 are
Dt0 ¼
ffiffiffiffiffiffiffi
2a0

p
; c0 ¼ 0.
It is evident that for the half-step version, Dti are determined by ai, while in the standard version, they are

also affected by bi�1.

With the equivalence between the procedures established above, the following remarks can thus be

made:

� The preconditioned CG method can be viewed as a special central difference time integration scheme for

a damped dynamic system;

� The preconditioning matrix MP in PCG serves as the mass matrix in the dynamic system, while for the
standard CG method, M = I (the identity matrix);

� The search directions pi in the (P)CG algorithm are closely associated with the velocities in the central

difference procedure;

� The variable nature of ai and bi ensures that both Dti and ci will be different at each step. Additional

features of Dti and ci are further illustrated by two numerical examples below.
3. Numerical illustrations

Example 1. First consider K to be a diagonal matrix of order n = 100:
K ¼ diagfa1; . . . ; ang;

where a1 = 1, an = 103, and the rest terms are randomly chosen with a uniform distribution in the range

[a1,an]. A higher condition number can be achieved by giving a larger value of an. The right hand side b

is also generated randomly within the range [�1,1]. No preconditioning is employed for the CG algorithm,

i.e.,M = MP = I. Although this simple example cannot comprehensively represent a wide range of problems
encountered in practice, it can highlight certain dynamic features of the CG algorithm.

The convergence history of the CG iterations, in terms of relative residual norm
ei ¼
ffiffiffiffiffiffiffiffi
rTi ri

q ffiffiffiffiffiffiffiffi
bTb

p.

is depicted in Fig. 1(a). For comparison, the convergence of the standard DR procedure with the optimum

parameters Dtop and cop (referring to (12)) is also given in the figure. The superiority of the CG algorithm,

in terms of convergence, to the DR approach is clearly demonstrated at least in this case.

Define, respectively, two types of energy, �kinetic� and �elastic�, of the system at any iteration as
Ek ¼
1

2
vTiþ1=2Mviþ1=2; Ee ¼

1

2
uTi Kui.
The evolution of these two energy functions for both the CG and DR iterations is given in Fig. 1(b).
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Fig. 1. Example 1: (a) convergence histories; (b) energy evolution; (c) time-step Dti; and (d) damping coefficient ci.
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Dti and ci computed on the basis of (25) and (26) are shown, respectively, in Figs. 1(c) and (d). It is evi-

dent that: (1) Dti are different at each step, and sometimes exceed the time step limit Dtcr; (2) The damping

parameter ci are varied and become negative at some iterations; (3) The oscillation of both Dti and ci is

stronger in the standard version than the half-step version, particularly for Dti, while the evolution patterns
of ci in the two versions are fairly similar; (4) When the CG iterative procedure starts to converge, Dti and ci
tend to oscillate less in the half-time version. However, it is found that the oscillation of both Dti and ci in

the standard version is much stronger and also persistent for larger scale problems; while the evolution pat-

terns of Dti and ci in the half-step version appear to be consistent for all cases. In particular ci in the half-

step version would be negative at iterations where the residual errors are larger than at the previous steps

and become positive when a monotonic decrease of the residual error is established.

In the context of a dynamic system, the behaviour of the CG procedure may be revealed by the evolution

of Ek and Ee and how these two types of energy exchange and transfer during the whole course of the iter-
ations. From the convergence point of view, as both energies are initially zero (since u0 = 0 and v0 = 0), the

kinetic energy should be increased sufficiently fast at the initial stage so that a required level of elastic en-

ergy can be rapidly achieved, while at the later stage the kinetic energy should be effectively damped out.

The mechanism that governs the evolution and exchange of these two types of energy may determine the

convergence of the CG algorithm.
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As illustrated in Fig. 1(b), the CG iterative procedure is characterized by a strong oscillation of the ki-

netic energy prior to the establishment of convergence, in contrast to a fairly smooth convergence of the

elastic energy. It appears that significant amount of kinetic energy is gained mainly at those iterations where

the damping is negative, and may also be attributed, to a lesser degree, to those time steps larger than Dtcr.
At these iterations a high level of the residual error is also observed (referring to Fig. 1(a)). Note that the
peak values of the kinetic energy can be much more pronounced for higher condition numbers. On the con-

trary, the evolution of the kinetic energy in the DR procedure, as also given in the figure, is very smooth,

but its decay (and the convergence of the elastic energy) is much slower.

Example 2. The dynamic features of PCG observed above and the effects of different preconditioning
techniques are further examined by a practical structural example. It consists of finite element modelling of

a 3D elastic bridge with 10-noded tetrahedral elements. The geometric and material details of the example

can be found in [13]. The resulting linear system of equations with an order of 88,622 is solved by PCG

using two preconditioners: the no-fill Incomplete Cholesky (IC(0)) decomposition and the diagonal (Jacobi)

preconditioning (DP).

Again, the convergence history of the relative residual error, the evolution of both kinetic and elastic

energy, and the corresponding Dti and ci at each iteration version are illustrated in Fig. 2, where the dy-

namic interpolation of the PCG iterations is based on the half-step version. A similarity to Fig. 1 (Example
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Fig. 2. Example 2: (a) convergence histories; (b) energy evolution; (c) time-step Dti; and (d) damping coefficient ci.
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1) in terms of the dynamic features for both preconditioning schemes is clearly demonstrated. It is also illus-

trated that compared to the DP scheme, the IC(0) preconditioner results in larger time steps Dti, generally
larger and a wider range of damping parameters ci, and a faster and stronger evolution of the kinetic en-

ergy, leading to a better convergence.
4. Concluding remarks

The current work has established the fact that the preconditioned CG method can be viewed as a central

difference time integration scheme with a variable time step for a damped dynamic system, and therefore

possesses a discrete dynamic nature. Although its immediate practical benefit is not clear at present, this

new connection may provide an additional viewpoint to gain a further understanding of the behaviour

of the PCG method, and might also be possible to extend to other Krylov based iterative solvers in general.
In addition, this �dynamic� interpretation might shed new light on problems such as the understanding of

the short time convergence behaviour of most Krylov methods and the development of an optimal evolu-

tion scheme for a �flexible� or dynamically changing preconditioning technique. On the other hand, it may

also offer a possibility of developing a new scheme for the selection of the optimal parameters in the DR

technique. These issues are clearly of both theoretical and practical importance and thus deserve further

investigations.
Acknowledgements

The author thank the two reviewers for their constructive comments to improve this paper, and partic-

ularly for their suggestions for possible further work.
References

[1] M.R. Hestenes, E.L. Stiefel, Methods of conjugate gradients for solving linear systems, J. Natl. Bur. Stand 49 (1952) 409–436.

[2] P. Sonneveld, CGS: a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Stat. Comp. 10 (1989) 36–52.

[3] H. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear

equations, SIAM J. Sci. Stat. Comp. 13 (1992) 631–644.

[4] E. Polak, Computational Methods in Optimization: A Unified Approach, Academic Press, New York, 1971.

[5] M.A. Wolfe, Numerical Methods for Unconstrained Optimization, An Introduction, Von Nostrand Reinhold Company,

Berkshire, England, 1978.

[6] Y.T. Feng, D.R.J. Owen, Conjugate gradient methods for solving the smallest eigenpair of large symmetric eigenvalue problems,

Int. J. Numer. Eng. 39 (13) (1996) 2209–2229.

[7] J. Meijerink, H. van der Vorst, An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-

matrix, Math. Comp. 31 (1977) 148–162.

[8] M. Benzi, Preconditioning techniques for large linear systems: a survey, J. Comput. Phys. 182 (2002) 418–477.

[9] R.D. Lynch, S. Kelsey, H.C. Saxe, The application of DR to the finite element method of structural analysis. Technical Report

No. THEMIS-UND-68-1, Univ. Notre Dame, 1968.

[10] M. Papadrakakis, A method for the automatic evaluation of the dynamic relaxation parameters, Comp. Meth. Appl. Mech. Eng.

25 (1981) 35–48.

[11] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.

[12] T. Belytschko, W.K. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures, Wiley, Chichester, England, 2000.
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